HIGGS PRODUCTION AT N3LO

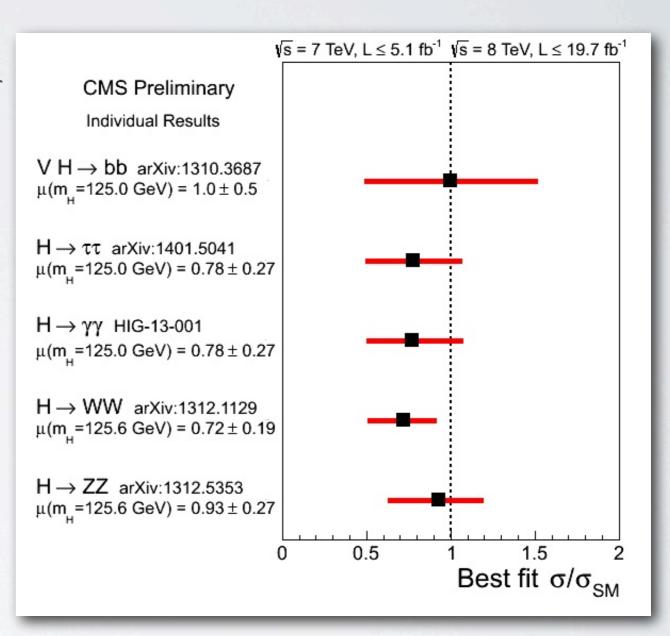
Falko Dulat

ETH zürich

based on work in collaboration with:
Babis Anastasiou, Claude Duhr, Elisabetta Furlan, Franz Herzog,
Thomas Gehrmann and Bernhard Mistlberger

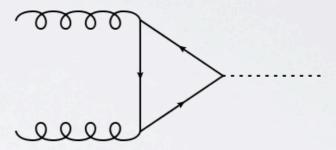
Motivation

- Discovery marks the beginning of the experimental era of Higgs physics
- Determination of the properties of the Higgs will be a challenge for years to come
- Requires precision measurements and predictions

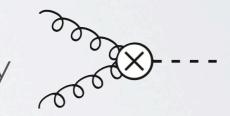


Amazing progress form the experiments

- The dominant Higgs production mode at the LHC is gluon fusion
 - Loop-induced process



- The Higgs boson is light compared to the top quark
- The top loop can be integrated out → effective theory



The tree-level coupling of the gluons to the Higgs is described by a dimension five operator

$$\mathcal{L} = \mathcal{L}_{\text{QCD}} - \frac{1}{4v} C_1 H G^a_{\mu\nu} G^{\mu\nu}_a$$

- Operators with higher dimension can be included in the computation
- This leads to a systematic expansion of the gluon fusion cross section in the top mass
- Sub-leading corrections in the top-mass are known at NNLO [Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]
- In the following I will only talk about the leading term in the effective theory

The gluon fusion cross-section in perturbation theory is

$$\sigma\left(pp \to H + X\right) = \tau \sum_{ij} \int_{\tau}^{1} dz \mathcal{L}_{ij}(z) \hat{\sigma}_{ij} \left(\frac{\tau}{z}\right)$$

- We compute the inclusive partonic cross section
- The partonic cross section is a function of

$$z = \frac{m_h^2}{\hat{s}} \quad \rightarrow \quad \bar{z} = \frac{\hat{s} - m_h^2}{\hat{s}} \qquad \qquad \tau = \frac{m_h^2}{E_{cm}^2}$$

· In perturbation theory the partonic cross section can be expanded

$$\hat{\sigma}(z) = \hat{\sigma}^{LO}(z) + \alpha_s \hat{\sigma}^{NLO}(z) + \alpha_s^2 \hat{\sigma}^{NNLO}(z) + \alpha_s^3 \hat{\sigma}^{N3LO}(z) + \dots$$

- The lower orders of the gluon fusion cross section have been computed
 - NLO (full theory)

 [Dawson; Djouadi, Spira, Zerwas]

Timed of del only					
	σ [8 TeV]	$\delta\sigma$ [%]			
LO	9.6 pb	~ 25%			
NLO	16.7 pb	~ 20%			
NNLO	19.6 pb	~ 7 - 9%			
N3LO	???	~ 4 - 8%			

fixed order only

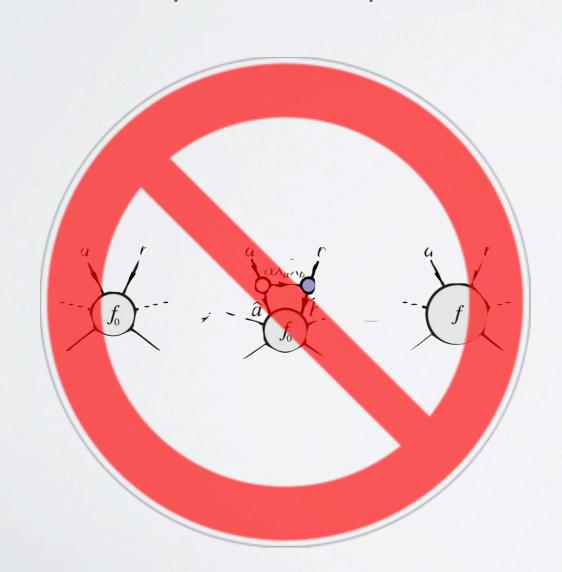
• NNLO (effective theory and sub-leading top-mass corrections)

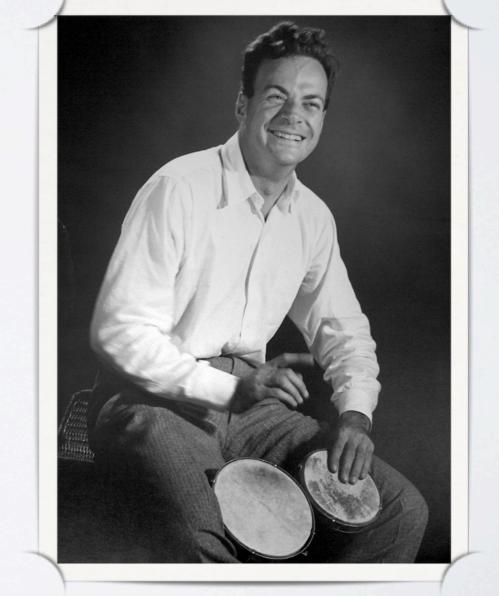
[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

- We want to push the calculation one order higher
- Uncharted territory in perturbation theory

The calculation

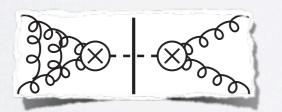
 Combination of loop corrections and real emissions computed using Feynman diagrams is the only way for analytic computations at N3LO at this point

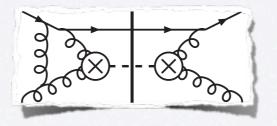


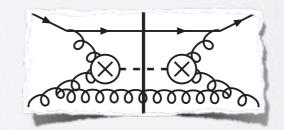


The calculation

- Combination of loop corrections and real emissions computed using Feynman diagrams is the only way for analytic computations at N3LO at this point
- Lots of Feynman diagrams
- At NNLO: ~1000 interference diagrams

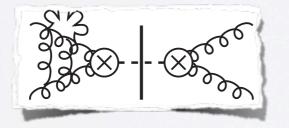


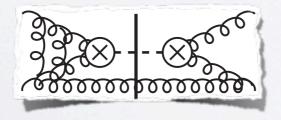


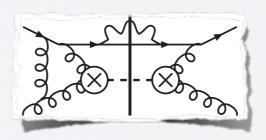


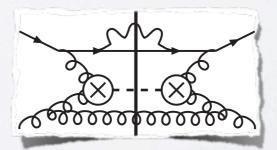
The calculation

- Combination of loop corrections and real emissions computed using Feynman diagrams is the only way for analytic computations at N3LO at this point
- Lots of Feynman diagrams
- At N3LO: ~100000 interference diagrams

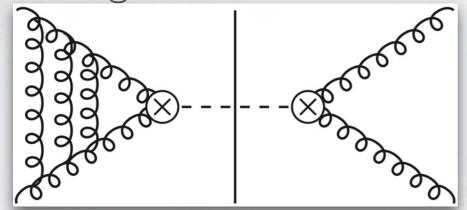




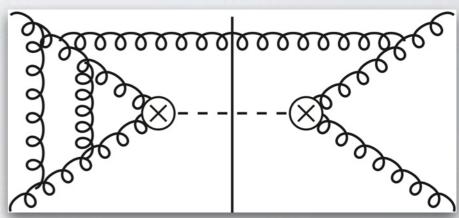




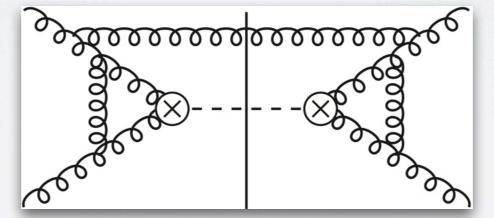
Diagrammatic contributions at NNNLO



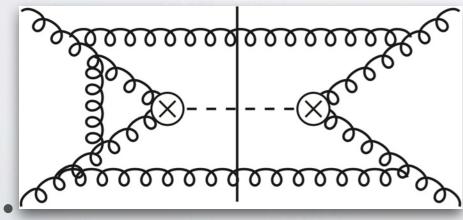
triple virtual



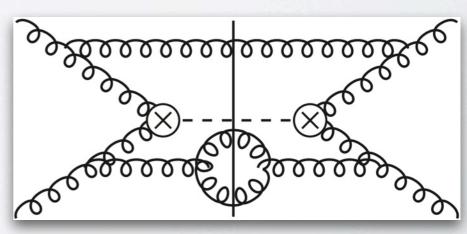
double virtual real



real virtual squared



double real virtual

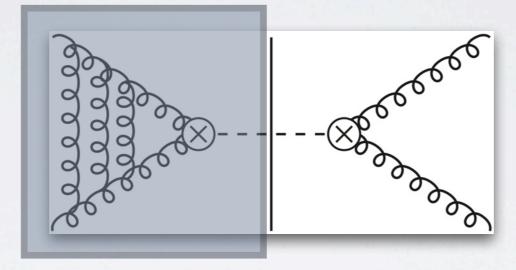


triple real

The triple virtual

· The triple virtual is directly related to the three loop QCD form

factor



- The QCD form factor is well known
 - at one loop
 - at two loops [Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maitre]
 - at three loops [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
- The pure loop contributions are not a problem in the calculation

Unitarity

Optical theorem:

$$\operatorname{Im} = \int d\Phi$$

- Discontinuities of loop integrals are phase space integrals
- Discontinuities of loop integrals are given by Cutkosky's rule:

$$\frac{1}{p^2 - m^2 + i\epsilon} \to \delta^+(p^2 - m^2) = \delta(p^2 - m^2)\theta(p^0)$$

Reverse unitarity

Optical theorem:

$$\operatorname{Im} = \int d\Phi$$

- The optical theorem can be read 'backwards'
- This way, phase space integrals can be expressed as unitarity cuts of loop integrals

 [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- · We can compute loop integrals with cuts instead of phase space integrals
- This makes the rich technology developed for loop integrals available

IBPs and master integrals

- Loop integrals are in general not independent but related by Integration-by-parts identities (IBPs)
- The IBPs form a system of equations for a given class of loop integrals
- The system can be solved algorithmically expressing all integrals through a small basis set of integrals (master integrals)

$$= -\frac{(\epsilon - 1)(2\epsilon - 1)(3\epsilon - 2)(3\epsilon - 1)(6\epsilon - 5)(6\epsilon - 1)}{\epsilon^4(\epsilon + 1)(2\epsilon - 3)}$$

IBPs and differential equations

- Having access to IBP technology allows us to derive differential equations for master integrals
- The derivative of a master integral w.r.t. kinematic invariants can be expressed as a linear combination of master integrals
- Leads to a coupled system of linear differential equations for the master integrals $\bar{z} = 1 z = \frac{s m_h^2}{z}$

$$\left[\partial_{\overline{z}} - 3\epsilon \operatorname{dlog}(1 - \overline{z})\right]$$

$$= \epsilon \operatorname{dlog}(1-\bar{z})$$

$$-3\epsilon \operatorname{dlog}(1-\bar{z})$$

Differential equations and boundaries

- Integrating the differential equations for the master integrals yields general solutions
- · These general solutions need to be fixed using boundary conditions
- Natural boundary condition for the problem at

$$\bar{z} = 0 \iff \hat{s} = m_h^2$$

- This corresponds to the soft or threshold limit of the process
- Higgs is produced on shell
- Any additional radiation is low energetic (soft)

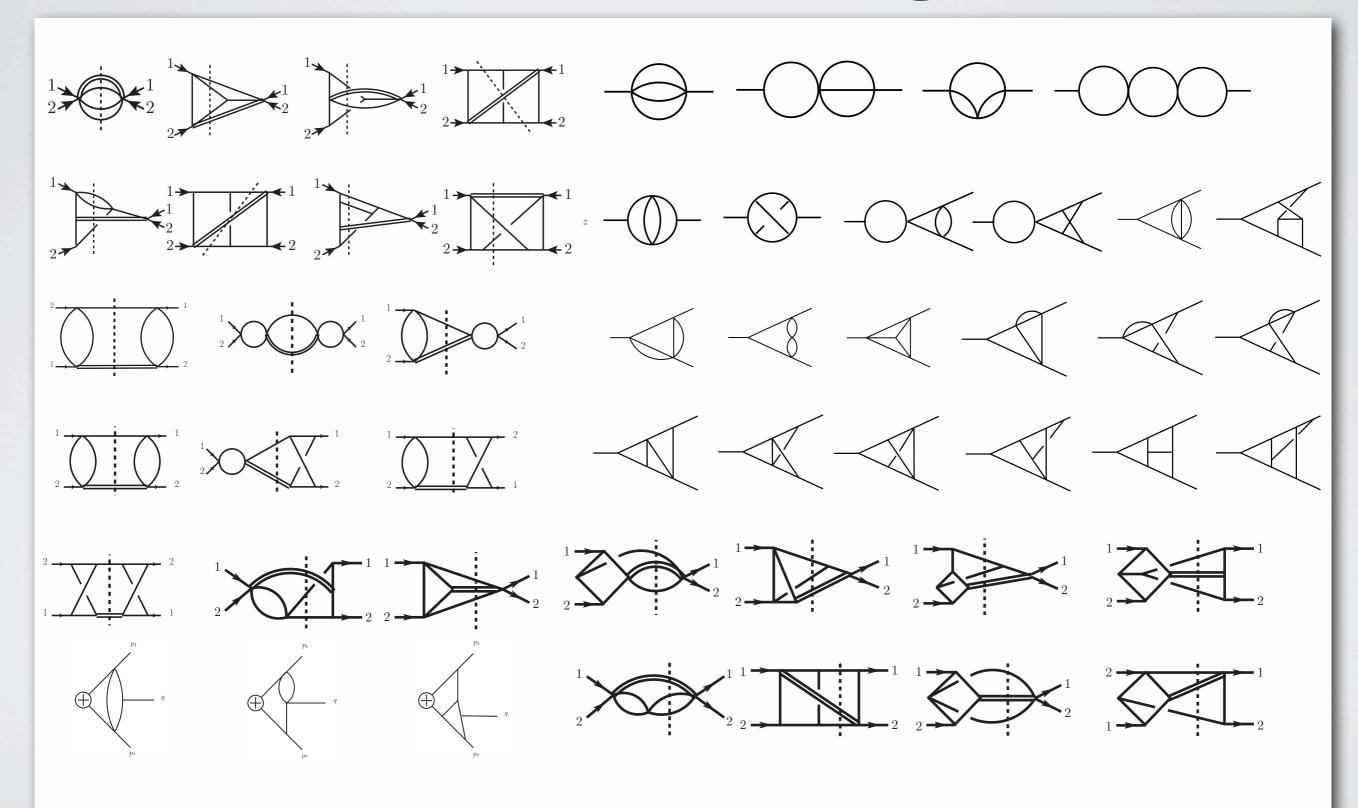
Threshold expansion

Systematic expansion of the cross section

$$\hat{\sigma}(\bar{z}) = \sigma^{(-1)} + \sigma^{(0)} + \sigma^{(1)}\bar{z} + \dots$$

- Expansion reduces complexity of the calculation
- · Reduced number of integrals that need to be computed
- First approximation of the cross section
- Most important ingredient for calculating the full result

The master integrals



The master integrals

- · One of the biggest challenges of the project
- Calculation of the integrals is only possible using a variety of the most modern techniques
- Lots of inspiration from number theory
- · Required development of new technologies

The master integrals

Renormalisation Symbols
Polylogarithms
IR-Singularities.
Dimensional Shift I dentities. HopfAlgebras ExpansionByRegions MellinBarnes MultiloopAmplitudes ZetaValuesNestedSums SoftCurrent MassFact .들 Unitarity SectorDecomposi

The soft-virtual approximation

- All required integrals can be computed analytically
 - 22 three-loop integrals
 - 3 double-virtual real integrals
 - 7 real-virtual squared integrals
 - 9 double-real virtual integrals
 - 8 triple real integrals

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]

[Duhr, Gehrmann; Li, Zhu]

[Anastasiou, Duhr, FD, Herzog, Mistlberger; Kilgore]

[Anastasiou, Duhr, FD, Herzog, Mistlberger; Li, von Manteufel, Schabinger, Zhu]

[Anastasiou, Duhr, FD, Mistlberger]

- Additionally
 - three-loop splitting functions
 - three-loop beta functions
 - three-loop Wilson coefficient

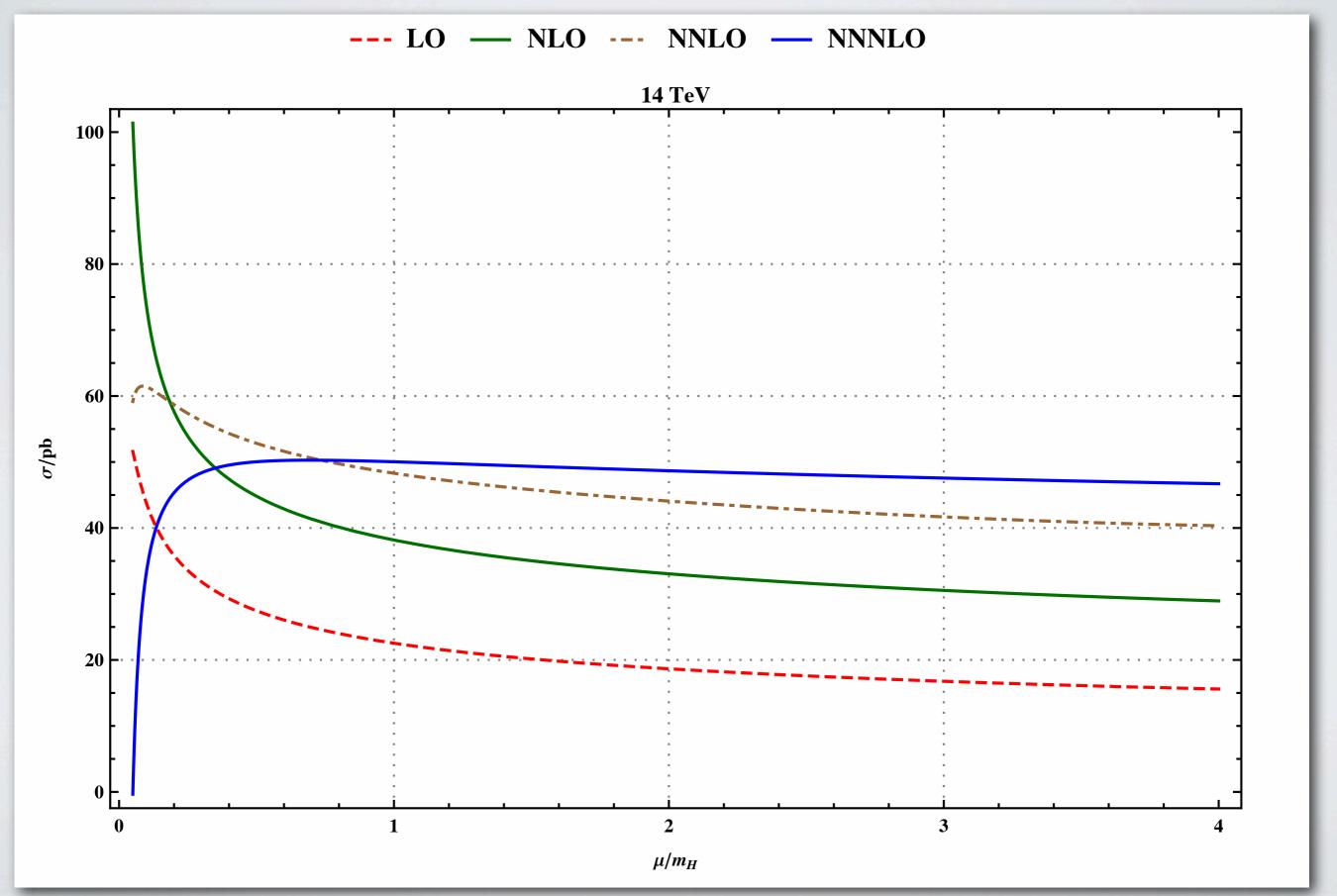
[Moch, Vogt, Vermaseren]

[Tarasov, Vladimirov, Zharkov; Larin, Vermaseren]

[Chetyrkin, Kniehl, Steinhauser; Schroder, Steinhauser; Chetyrkin, Kuhn, Sturm]

$$\begin{split} \hat{\eta}^{(3)}(z) &= \delta(1-z) \left\{ C_A^3 \left(-\frac{2003}{48} \zeta_6 + \frac{413}{6} \zeta_3^2 - \frac{7579}{144} \zeta_5 + \frac{979}{24} \zeta_2 \zeta_3 - \frac{15257}{864} \zeta_4 - \frac{819}{16} \zeta_3 + \frac{16151}{1296} \zeta_2 + \frac{215131}{5184} \right) \right. \\ &\quad + N_F \left[C_A^2 \left(\frac{869}{72} \zeta_5 - \frac{125}{12} \zeta_3 \zeta_2 + \frac{2629}{432} \zeta_4 + \frac{1231}{216} \zeta_3 - \frac{70}{81} \zeta_2 - \frac{98059}{5184} \right) \right. \\ &\quad + N_F^2 \left[C_A \left(-\frac{19}{36} \zeta_4 + \frac{43}{108} \zeta_3 - \frac{133}{324} \zeta_2 + \frac{2515}{1728} \right) + C_F \left(-\frac{1}{36} \zeta_4 - \frac{7}{6} \zeta_3 - \frac{23}{72} \zeta_2 + \frac{4481}{2592} \right) \right] \right\} \\ &\quad + \left[\frac{1}{1-z} \right]_+ \left\{ C_A^3 \left(186 \zeta_5 - \frac{725}{6} \zeta_3 \zeta_2 + \frac{253}{24} \zeta_4 + \frac{8941}{108} \zeta_3 + \frac{8563}{324} \zeta_2 - \frac{297029}{23328} \right) + N_F^2 C_A \left(\frac{5}{27} \zeta_3 + \frac{10}{27} \zeta_2 - \frac{58}{729} \right) \right. \\ &\quad + N_F \left[C_A^2 \left(-\frac{17}{12} \zeta_4 - \frac{475}{36} \zeta_3 - \frac{2173}{324} \zeta_2 + \frac{31313}{31664} \right) + C_A C_F \left(-\frac{1}{2} \zeta_4 - \frac{19}{18} \zeta_3 - \frac{1}{2} \zeta_2 + \frac{1711}{864} \right) \right] \right\} \\ &\quad + \left[\frac{\log(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-77\zeta_4 - \frac{352}{3} \zeta_3 - \frac{152}{3} \zeta_2 + \frac{30569}{648} \right) + N_F^2 C_A \left(-\frac{4}{9} \zeta_2 + \frac{25}{81} \right) \right. \\ &\quad + N_F \left[C_A^2 \left(\frac{46}{3} \zeta_3 + \frac{94}{9} \zeta_2 - \frac{4211}{324} \right) + C_A C_F \left(6 \zeta_3 - \frac{63}{8} \right) \right] \right\} \\ &\quad + \left[\frac{\log^2(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(181 \zeta_3 + \frac{187}{3} \zeta_2 - \frac{1051}{27} \right) + N_F \left[C_A^2 \left(-\frac{34}{3} \zeta_2 + \frac{457}{54} \right) + \frac{1}{2} C_A C_F \right] - \frac{10}{27} N_F^2 C_A \right\} \\ &\quad + \left[\frac{\log^3(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 + \frac{4}{27} N_F^2 C_A \right\} \\ &\quad + \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 + \frac{4}{27} N_F^2 C_A \right\} \\ &\quad + \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 + \frac{4}{27} N_F^2 C_A \right\} \\ &\quad + \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 + \frac{4}{27} N_F^2 C_A \right\} \\ &\quad + \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 + \frac{4}{27} N_F^2 C_A \right\} \right\} \\ &\quad + \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 \right\} \\ &\quad + \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{92$$

- This result contains the full three-correction and all corrections coming from the emission of up to three soft gluons
- How did we make sure that it is correct?
 - We observe the extremely intricate cancellation of six poles in dimensional regularization
 - The plus distribution terms agree with a calculation by Moch and Vogt
 - All master integrals were calculated analytically and cross checked numerically
 - We performed internal independent calculations for all pieces and some contributions have been calculated and confirmed by other groups as well



Caveat

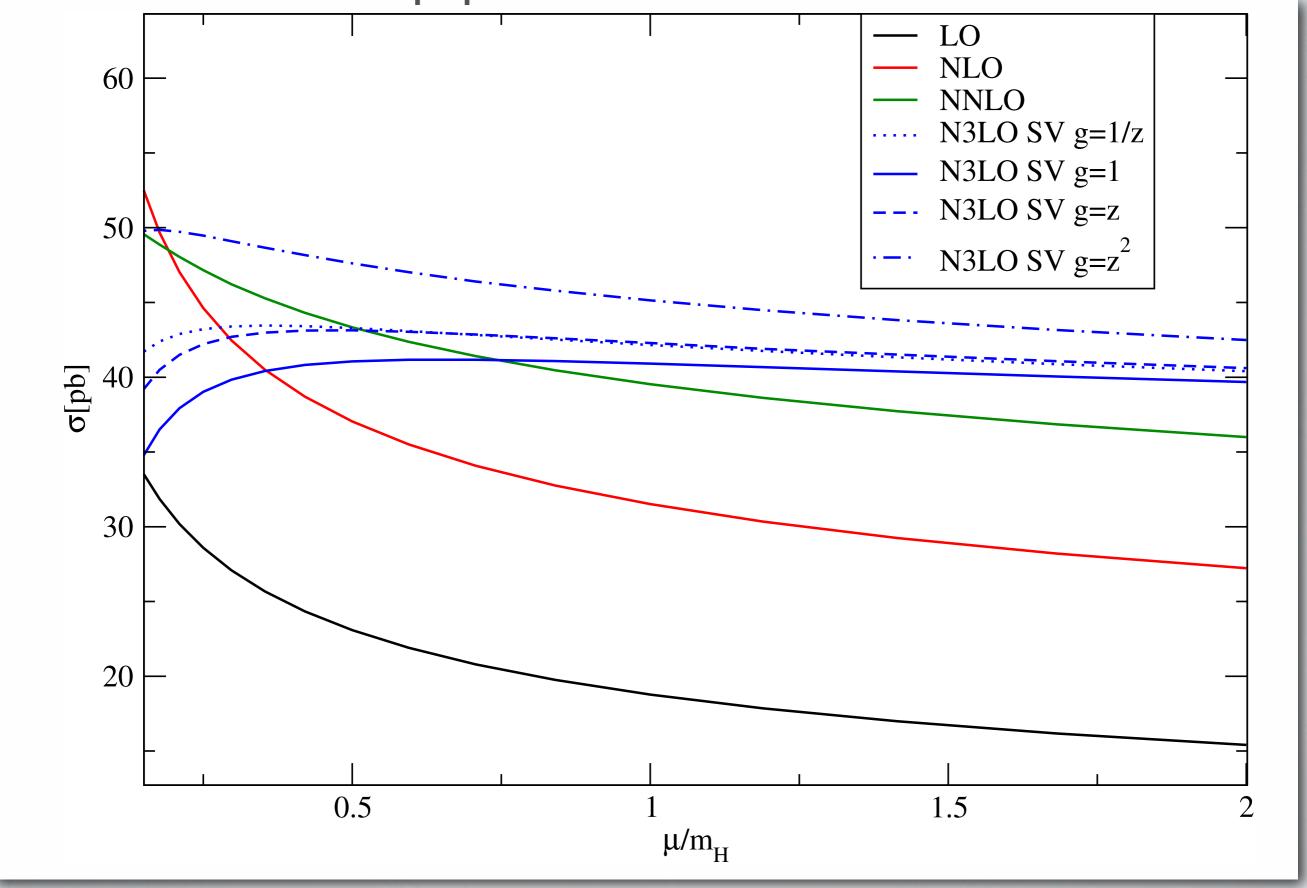
- The soft-virtual cross section is only the first term of the expansion
- Soft-virtual term is ambiguous

$$\sigma = \int dx_1 dx_2 \operatorname{pdf}(x_1) \operatorname{pdf}(x_2) [zg(z)] \left[\frac{\hat{\sigma}(z)}{zg(z)} \right]_{\text{threshold}}$$

• We can choose any g(z) as long as $\lim_{z\to 1}g(z)=1$

g(z)	1	z	z^2	1/z
$\frac{\delta\sigma^{N3LO}}{\sigma^{LO}}$	-2.27%	8.19%	30.16%	7.73%

The soft approximation at N3LO



Outlook & Conclusion

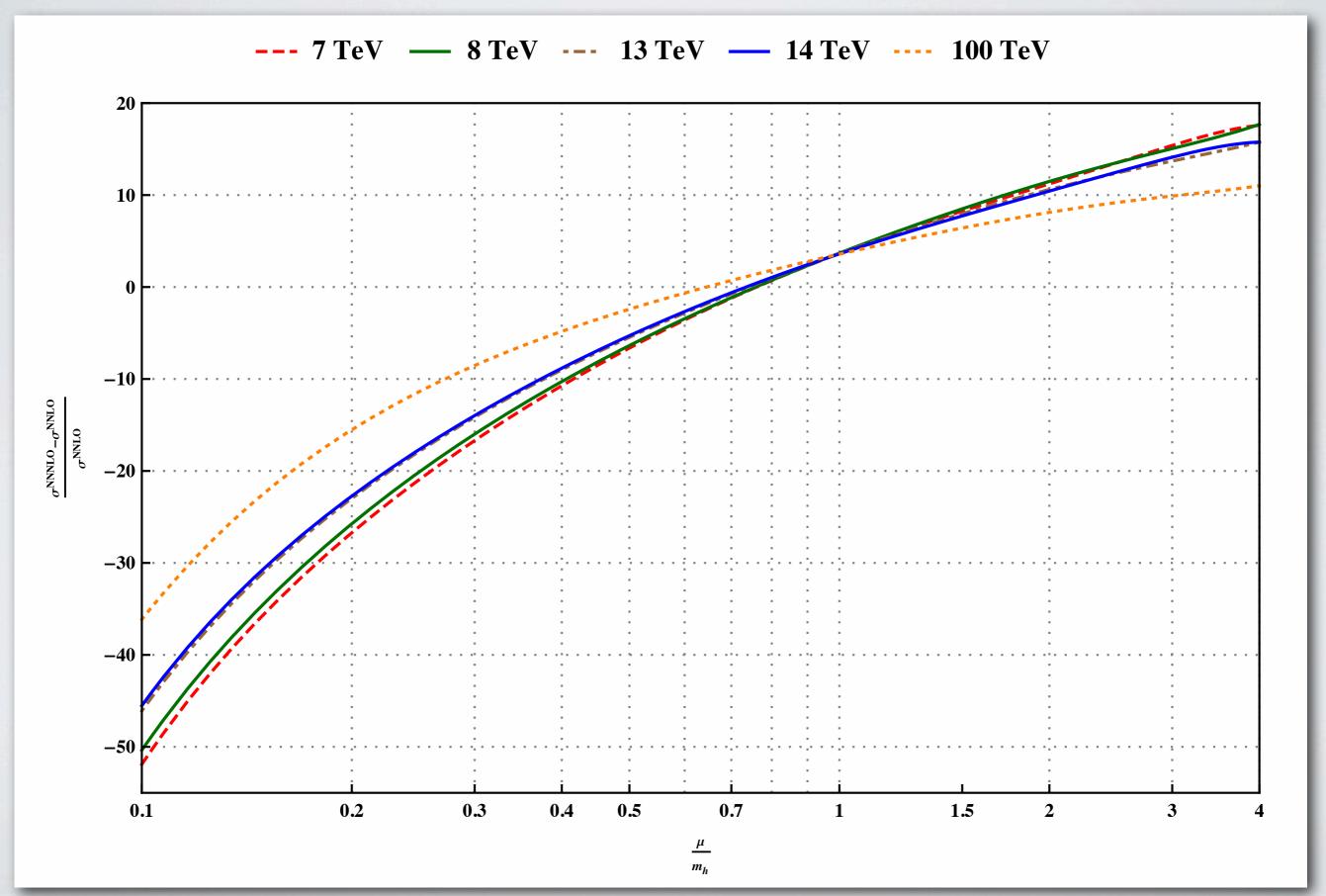
- We have completed the first calculation of the Higgs boson cross section at N3LO in the soft-virtual approximation
- · Calculation of more terms in the expansion in progress
- More terms will allow for phenomenologically meaningful predictions
- Will result in an updated prediction for the Higgs cross section at N3LO

Outlook & Conclusion

- The soft-virtual term provides boundary conditions to the full kinematic solution
- Calculation of the full kinematic result in progress
- Our methods open opportunities for further calculations: Drell-Yan, SuSy Higgs, eventually 2 to 2 processes

Thank you for your attention

Backup slides



Threshold expansion

How fast is the convergence?

